基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
车辆再识别旨在从多个摄像机拍摄的图像中识别出同一车辆.本文提出了一种对群三元组损失函数,以特征中心点替代均值,并将对群思想和三元组损失相结合,优化了困难样本的识别.车辆再识别过程中,对群损失函数的训练过程扩大了样本规模,增加了计算量,且传统对群损失函数无法准确处理困难正样本.为此,提出了一种特征聚类对群三元组损失函数.本方法采用正样本特征聚类中心并改进了三元组损失函数的设计,从而优化了对群损失函数.在不扩增输入样本数量的同时提升了算法处理困难样本的能力.实验表明,与主流车辆再识别算法相比,本方法可有效提升车辆再识别的准确率.
推荐文章
嵌套池化三元组卷积神经网络的行人再识别
行人再识别
嵌套池化
三元组损失函数
局部特征
间接度量
正则半群的模糊同余三元组
模糊同余
模糊同余三元组
L(R)部分
Green等价关系
正则半群
基于三元组特征和词向量技术的中文专利侵权检测研究
专利侵权
信息抽取
词向量
相似度计算
文本处理
基于SPO语义三元组的自闭症谱系障碍药物知识发现
自闭症谱系障碍
知识图谱
语义挖掘
药物重定位
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征聚类对群三元组损失的车辆再识别
来源期刊 电子学报 学科 工学
关键词 车辆再识别 视觉特征 特征聚类对群损失 三元组损失
年,卷(期) 2020,(12) 所属期刊栏目 学术论文
研究方向 页码范围 2444-2452
页数 9页 分类号 TP391.4
字数 语种 中文
DOI 10.3969/j.issn.0372-2112.2020.12.021
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
车辆再识别
视觉特征
特征聚类对群损失
三元组损失
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
论文1v1指导