基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对k-means在聚类微博用户感兴趣话题时存在的问题,结合粒子群算法,提出一种学习因子、时间因子随惯性权重调整的MPSO-kmeans算法.该算法通过引入随惯性权重调整的学习因子,增强了惯性权重与学习因子之间的相互作用,提高了算法的全局搜索能力和局部寻优能力.在此基础上,引入线性飞行因子以减少粒子的震荡,近一步提高局部精度搜索能力.实验表明,该算法在聚类微博数据时,具有更好的寻优能力和聚类效果.
推荐文章
一种改进的简化均值粒子群K-means聚类算法
粒子群优化算法
简化粒子群
邻域最优粒子
K-means聚类
聚类数
初始聚类中心
基于粒子群优化的模糊K-Means目标分类算法
粒子群
模糊
分类
K均值
聚类
结合双粒子群和K-means的混合文本聚类算法
双粒子群
自调整惯性权值
信息交流
K-means算法
文本聚类
基于动态粒子群优化与K-means聚类的图像分割算法
图像分割
动态粒子群优化
K-means聚类
适应度方差
聚类算法
DPSOK
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种实现微博兴趣挖掘的粒子群优化k-means算法
来源期刊 计算机与数字工程 学科 工学
关键词 k-means算法 粒子群优化算法 学习因子 惯性权重
年,卷(期) 2020,(8) 所属期刊栏目 算法与分析
研究方向 页码范围 1819-1823
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.08.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄树成 36 126 5.0 10.0
2 王逊 21 25 3.0 4.0
3 沈超 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (105)
共引文献  (51)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(14)
  • 参考文献(0)
  • 二级参考文献(14)
2013(18)
  • 参考文献(0)
  • 二级参考文献(18)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(8)
  • 参考文献(3)
  • 二级参考文献(5)
2017(8)
  • 参考文献(6)
  • 二级参考文献(2)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
k-means算法
粒子群优化算法
学习因子
惯性权重
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导