基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
评论情感分析是用户生成内容分析的一个研究热点.评论对象的多样性与评论者用语的随意性,导致评论情感分析成为一个非常具有挑战性的任务.现有方法主要通过预先构建情感词表来计算评论的情感极性,但这类方法无法处理同一个词语在不同语境下情感极性存在差异的问题.针对这一问题,文中提出了一种基于注意力的卷积-递归神经网络模型,对评论的情感极性和词语在不同语境下的情感极性进行了建模.通过结合词语在句子中的上下文语境,所提方法可以将注意力集中在主要情感词周围的一个小范围内,并以一种自适应的方式对情感词的情感极性进行计算,提高了词语情感极性判断的准确率,进而提高了短文本的情感极性准确率.与CRNN,CNN以及基于情感词典的方法相比,所提方法在中文数据集(美团评论、党建评论)和英文数据集(亚马逊商品评论数据集)上都达到了更好的效果.
推荐文章
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
基于表情符注意力机制的微博情感分析模型
表情符
微博
情感分析
注意力机制
基于深层注意力的LSTM的特定主题情感分析
特定主题情感分析
深层注意力
LSTM
深度学习
自然语言处理
采用循环神经网络的情感分析注意力模型
情感分析
循环神经网络
注意力
长短时记忆
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于注意力机制的评论情感分析及情感词检测
来源期刊 计算机科学 学科 工学
关键词 情感分析 注意力机制 卷积-递归神经网络 多粒度
年,卷(期) 2020,(1) 所属期刊栏目 人工智能
研究方向 页码范围 186-192
页数 7页 分类号 TP391
字数 8703字 语种 中文
DOI 10.11896/jsjkx.181002011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王国胤 5 80 4.0 5.0
2 李智星 3 4 1.0 1.0
3 王化明 2 3 1.0 1.0
4 李苑 1 1 1.0 1.0
5 滕磊 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (20)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (7)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
情感分析
注意力机制
卷积-递归神经网络
多粒度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
论文1v1指导