基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
滚动轴承在煤机设备中广泛应用,在恶劣工况下容易发生故障.为了能够及时准确地获取滚动轴承的运转状态,采用BP神经网络算法与小波函数对轴承振动信号进行分解,从而对滚动轴承进行状态监测以及故障诊断.实验结果表明,BP神经网络能够准确获得滚动轴承的运动状态及故障类型.
推荐文章
基于概率神经网络的滚动轴承故障诊断
PNN网络
BP神经网络
故障诊断
滚动轴承
基于小波包和改进BP神经网络的滚动轴承故障诊断方法
小波包
BP神经网络
Levenberg?Marquardt
滚动轴承
故障诊断
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
高阶模糊BP神经网络及其在滚动轴承故障诊断中的应用
高阶模糊BP神经网络
隶属函数
二阶BP算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的滚动轴承故障诊断
来源期刊 煤矿机械 学科 工学
关键词 BP神经网络 振动 故障诊断 滚动轴承
年,卷(期) 2020,(8) 所属期刊栏目 故障·诊断
研究方向 页码范围 172-173
页数 2页 分类号 TH133.33
字数 语种 中文
DOI 10.13436/j.mkjx.202008056
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (35)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(9)
  • 参考文献(1)
  • 二级参考文献(8)
2018(11)
  • 参考文献(1)
  • 二级参考文献(10)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
振动
故障诊断
滚动轴承
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤矿机械
月刊
1003-0794
23-1280/TD
大16开
哈尔滨市古香街30号
14-38
1980
chi
出版文献量(篇)
21080
总下载数(次)
49
总被引数(次)
87205
论文1v1指导