基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了更快且更准确地对图像进行识别,提出了基于局部感受野的宽度学习算法(Local Receptive Field based Broad Learning System,BLS-LRF),该方法以宽度学习网(Broad Learning System,BLS)为基础模型,与局部感受野(LRF)的思想相结合,从局部特征和全局特征两方面对图像进行特征提取.采用两种图像数据集对网络进行研究,将研究结果和许多传统神经网络进行对比,结果表明BLS-LRF网络的测试精度不仅超过了传统网络的测试精度,而且训练过程所需要的时间有了很大程度的缩短.
推荐文章
基于聚类框架与局部感受野的实时人脸疲劳检测
神经网络
深度学习
目标检测
疲劳识别
感受野
聚类
基于感受野学习的特征词袋模型简化算法
视觉词袋模型
感受野学习
目标识别
图像分类
特征学习
基于局部感受野扩张D-MobileNet模型的图像分类方法
图像分类
深度神经网络
MobileNet
空洞卷积
D-MobileNet
基于深度网络的可学习感受野算法在图像分类中的应用
图像分类
分层结构
深度网络
感受野
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 局部感受野的宽度学习算法及其应用
来源期刊 计算机工程与应用 学科 工学
关键词 宽度学习网 局部感受野 神经网络 图像分类
年,卷(期) 2020,(9) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 162-167
页数 6页 分类号 TP389.1
字数 4700字 语种 中文
DOI 10.3778/j.issn.1002-8331.1901-0122
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李国强 燕山大学电气工程学院 56 266 9.0 14.0
2 徐立庄 燕山大学电气工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (1)
共引文献  (98)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
宽度学习网
局部感受野
神经网络
图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
河北省自然科学基金
英文译名:
官方网址:
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导