基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在协同过滤算法中最主要是用户相似度计算,但是用户评分项数据存在严重稀疏,导致推荐精准度降低.针对评分项数据稀疏性问题,论文提出一个C-DAE协同过滤算法.首先,利用卷积神经网络(CNN)对项目评论文本提取用户兴趣偏好,得到项目向量矩阵,其次,利用项目向量矩阵对降噪自编码器(DAE)加权填充原始评分矩阵,最后填充后的评分矩阵计算用户相似度进行推荐.实验结果证明,该方法解决了评分项数据稀疏性问题,提高了推荐质量.
推荐文章
基于栈式降噪自编码器的协同过滤算法
推荐系统
协同过滤
深度学习
栈式降噪自编码器
基于深度卷积自编码神经网络的手写数字识别研究
卷积自编码神经网络
双线性插值
手写数字识别
深度学习
一种改进的降噪自编码神经网络不平衡数据分类算法
神经网络
过采样
不平衡数据
分类
基于卷积神经网络的辐射图像降噪方法研究
辐射图像
图像降噪
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于降噪自编码和卷积神经网络的协同过滤算法
来源期刊 计算机与数字工程 学科 工学
关键词 数据稀疏 词向量 卷积神经网络 降噪自编码器 协同过滤
年,卷(期) 2020,(10) 所属期刊栏目 信息处理与网络安全
研究方向 页码范围 2441-2445,2457
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.10.026
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (127)
共引文献  (148)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(13)
  • 参考文献(0)
  • 二级参考文献(13)
2010(13)
  • 参考文献(1)
  • 二级参考文献(12)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(13)
  • 参考文献(1)
  • 二级参考文献(12)
2015(9)
  • 参考文献(3)
  • 二级参考文献(6)
2016(10)
  • 参考文献(0)
  • 二级参考文献(10)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据稀疏
词向量
卷积神经网络
降噪自编码器
协同过滤
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导