原文服务方: 计算机应用研究       
摘要:
传统的矩阵分解算法在时间上将全部训练数据作为整体进行计算以获得用户兴趣特征,忽略了用户兴趣漂移问题.针对此问题,提出一种基于状态空间模型和概率矩阵分解的推荐算法.首先将用户兴趣特征向量与用户评分数据的矩阵分解映射到线性高斯状态空间中;然后使用EM算法和卡尔曼滤波器对模型参数进行动态求解;最后根据前后获得用户兴趣特征向量确认用户兴趣是否发生漂移,并进行相应推荐.实验结果表明,该算法与传统的矩阵分解推荐算法相比,能更好地感知用户兴趣漂移,提高推荐质量.
推荐文章
基于信任和概率矩阵分解的协同推荐算法研究
推荐系统
协同过滤
信任
数据稀疏
冷启动
矩阵分解
基于时序模型和矩阵分解的推荐算法
推荐算法
概率矩阵分解
时序行为
行为预测
基于联合概率矩阵分解的微博关注推荐算法
微博关注推荐
联合概率矩阵分解
关系相似度
影响力模型
基于标签的矩阵分解推荐算法
标签
矩阵分解
推荐算法
因子向量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于状态空间模型和概率矩阵分解的推荐算法
来源期刊 计算机应用研究 学科
关键词 矩阵分解 状态空间模型 EM算法 卡尔曼滤波
年,卷(期) 2020,(11) 所属期刊栏目 算法研究探讨
研究方向 页码范围 3263-3266
页数 4页 分类号 TP301
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.08.0276
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (159)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(10)
  • 参考文献(2)
  • 二级参考文献(8)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
矩阵分解
状态空间模型
EM算法
卡尔曼滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导