基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对个性化推荐中用户和项目描述信息未充分利用,用户评分矩阵数据集极端稀疏的情况,提出了基于深度神经网络和概率矩阵分解(PMF)的混合推荐算法.首先,对用户和项目描述信息进行预处理,形成包含用户偏好特征的用户和项目特征集,再将各特征输入深度神经网络模型中进行训练.同时,利用概率矩阵分解模型,根据用户评分矩阵通过最大后验估计优化得到潜在特征向量;然后,通过对概率矩阵分解模型的用户和项目潜在特征向量以及深度神经网络模型的真实特征向量进行迭代更新,收敛得到融合用户和项目真实信息的潜在特征向量;最后,利用该特征向量对用户进行个性化推荐.实验证明,本文算法较经典推荐算法以及前人算法在均方误差与平均绝对误差指标上均有改善,说明本文算法的有效性.
推荐文章
混合因子矩阵分解推荐算法
推荐算法
矩阵分解
混合因子
推荐解释
冷启动
基于信任和概率矩阵分解的协同推荐算法研究
推荐系统
协同过滤
信任
数据稀疏
冷启动
矩阵分解
基于状态空间模型和概率矩阵分解的推荐算法
矩阵分解
状态空间模型
EM算法
卡尔曼滤波
基于联合概率矩阵分解的微博关注推荐算法
微博关注推荐
联合概率矩阵分解
关系相似度
影响力模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度神经网络和概率矩阵分解的混合推荐算法
来源期刊 四川大学学报(自然科学版) 学科 工学
关键词 混合推荐 矩阵分解 神经网络 特征向量 卷积
年,卷(期) 2019,(6) 所属期刊栏目 计算机科学
研究方向 页码范围 1033-1041
页数 9页 分类号 TP391
字数 7782字 语种 中文
DOI 10.3969/j.issn.0490-6756.2019.06.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王霞 四川大学计算机学院 107 441 11.0 15.0
2 孙界平 四川大学计算机学院 15 91 6.0 9.0
3 琚生根 四川大学计算机学院 72 460 11.0 16.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (11)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (14)
二级引证文献  (0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
混合推荐
矩阵分解
神经网络
特征向量
卷积
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
双月刊
0490-6756
51-1595/N
大16开
成都市九眼桥望江路29号
62-127
1955
chi
出版文献量(篇)
5772
总下载数(次)
10
总被引数(次)
25503
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导