原文服务方: 计算机应用研究       
摘要:
针对在线学习过程中出现的知识过载及传统推荐算法中存在的数据稀疏和冷启动问题,提出了一种基于多层感知机(MLP)的改进型深度神经网络学习资源推荐算法.该算法利用多层感知机对非线性数据处理的优势,将学习者特征和学习资源特征进行向量相乘的预测方式转换为输入多层感知机的方式,改进了DN-CBR神经网络推荐模型.为验证模型的有效性,以爱课程在线学习平台数据为样本构建数据集,通过对比实验表明,在该数据集上,改进后模型相较于DN-CBR模型在归一化折损累积增益和命中率指标上分别提升了1.2%和3%,有效地提高了模型的推荐性能.
推荐文章
基于共轭梯度法的改进型BP神经网络PID控制算法
BP神经网络
PID控制器
共轭梯度法
基于改进型BP神经网络的电网负荷预测
电网负荷预测
BP神经网络
模拟退火优化算法
预测误差
改进型神经网络的热负荷预测
热负荷预测
BP神经网络
改进型神经网络
预测精度
基于改进型RBF神经网络辨识的PID控制
径向基函数
改进型RBF神经网络
PID控制
最近邻聚类算法
在线自整定
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MLP改进型深度神经网络学习资源推荐算法
来源期刊 计算机应用研究 学科
关键词 学习资源推荐 深度学习 卷积神经网络 word2vec 多层感知机
年,卷(期) 2020,(9) 所属期刊栏目 算法研究探讨
研究方向 页码范围 2629-2633
页数 5页 分类号 TP183
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.04.0109
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 樊海玮 17 67 4.0 7.0
2 张博敏 2 0 0.0 0.0
3 史双 2 0 0.0 0.0
4 张艳萍 5 1 1.0 1.0
5 蔺琪 2 0 0.0 0.0
6 孙欢 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (28)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(9)
  • 参考文献(0)
  • 二级参考文献(9)
2017(10)
  • 参考文献(0)
  • 二级参考文献(10)
2018(7)
  • 参考文献(7)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
学习资源推荐
深度学习
卷积神经网络
word2vec
多层感知机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导