A Noetherian (Artinian) Lie algebra satisfies the maximal (minimal) condition for ideals.Generalisations include quasi-Noetherian and quasi-Artinian Lie algebras.We study conditions on prime ideals relating these properties.We prove that the radicalof any ideal of a quasi-Artinian Lie algebra is the intersection of finitely many prime ideals,and an ideally finite Lie algebra is quasi-Noetherian if and only if it is qussi-Artinian.Both properties are equivalent to soluble-by-finite.We also prove a structure theorem for serially finite Artinian Lie algebras.