基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为准确预测光伏发电功率,在算法方面采用了在其他领域已较为成熟但在光伏预测领域鲜少使用的PSO-BP算法,对真实数据进行采集和处理并进行算法模型构建,较为准确地对光伏发电的输出功率进行了预测.在完成预测后,对误差进行了分析,明确了之后研究和改进的方向.
推荐文章
光伏发电系统发电功率预测
光伏
功率预测
粒子群算法
核函数极限学习机
基于Elman神经网络模型的短期光伏发电功率预测
光伏发电
功率预测
相似日
Elman神经网络
基于改进相似样本选取与特征提取的光伏发电功率预测方法
光伏发电功率预测
野值剔除与补正
优化相似样本
特征提取
广义回归神经网络
基于PCA-GA-BP算法的风力发电功率预测
风力发电
PCA 主成分分析
遗传算法
BP 神经网络
降维
传递函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-BP算法的光伏发电功率预测
来源期刊 黑龙江电力 学科
关键词 光伏发电出力 功率预测 人工智能算法 粒子群算法 PSO-BP神经网络
年,卷(期) 2021,(2) 所属期刊栏目 电网技术|Power System Technology
研究方向 页码范围 109-112,117
页数 5页 分类号 TM933.3+2|TP183
字数 语种 中文
DOI 10.13625/j.cnki.hljep.2021.02.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (285)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1919(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(4)
  • 参考文献(3)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
光伏发电出力
功率预测
人工智能算法
粒子群算法
PSO-BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
黑龙江电力
双月刊
1002-1663
23-1471/TM
大16开
哈尔滨市香坊区建北街61号
1979
chi
出版文献量(篇)
3200
总下载数(次)
3
总被引数(次)
8902
论文1v1指导