基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
关联规则是数据挖掘中的概念,通过分析数据找到数据之间的关联.海量数据会产生大量冗余和相似的关联规则,影响用户对规则的理解和判断.本文采用鸢尾花数据集进行实验.建立三个检验指标,删除冗余关联规则;在进行K-means分析时利用规则产生的三角形迭代选择初始点,再将删除冗余后的规则进行聚类.实验证实本文方法将相似的关联规则归为一簇,能有效的帮助用户迅速找到有用的关联规则,有助于用户更好的对规则进行理解和分析,提高了聚类的效率.
推荐文章
基于划分的数据挖掘K-means聚类算法分析
数据挖掘
聚类分析
K-means聚类算法
聚类中心选取
K-means算法改进
初始中心点
k-means算法的研究与改进
聚类
划分方法
数据样本
阈值
基于MapReduce框架下K-means的改进算法
MapReduce框架
K-means算法
数据挖掘
聚类分析
基于改进磷虾群算法的K-means算法
磷虾群算法
聚类算法
精英引领
最佳聚类数
动态分群
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的K-means算法的关联规则数据挖掘研究
来源期刊 小型微型计算机系统 学科 工学
关键词 K-means算法 关联规则 聚类算法 鸢尾花数据集
年,卷(期) 2021,(1) 所属期刊栏目 人工智能与算法研究
研究方向 页码范围 15-19
页数 5页 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱良宽 29 139 6.0 11.0
2 李珺 16 33 3.0 5.0
3 刘鹤 3 58 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (9)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(5)
  • 参考文献(0)
  • 二级参考文献(5)
2019(11)
  • 参考文献(8)
  • 二级参考文献(3)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-means算法
关联规则
聚类算法
鸢尾花数据集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导