基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The capacity of a massive MIMO cellular network depends on user and antenna selection algorithms,and also on the acquisition of perfect Channel State Information (CSI).Low computational cost algorithms for user and antenna selection significantly may enhance the system capacity,as it would consume a smaller bandwidth out of the total bandwidth for downlink transmission.The objective of this paper is to maximize the system sum-rate capacity with efficient user and antenna selection algorithms and linear precoding.We consider in this paper,a slowly fading Rayleigh channel with perfect acquisition of CSI to explore the system sum-rate capacity of a massive MIMO network.For user selection,we apply three algorithms,namely Semi-orthogonal user selection (SUS),Descending Order of SNR-based User Scheduling (DOSUS),and Random User Selection (RUS) algorithm.In all the user selection algorithms,the selection of Base Station (BS) antenna is based on the maximum Signal-to-Noise Ratio (SNR) to the selected users.Hence users are characterized by having both Small Scale Fading (SSF)due to slowly fading Rayleigh channel and Large-Scale Fading (LSF) due to distances from the base station.Further,we use linear precoding techniques,such as Zero Forcing (ZF),Minimum Mean Square Error (MMSE),and Maximum Ratio Transmission (MRT) to reduce interferences,thereby improving average system sum-rate capacity.Results using SUS,DOSUS,and RUS user selection algorithms with ZF,MMSE,and MRT precoding techniques are compared.We also analyzed and compared the computational complexity of all the three user selection algorithms.The computational complexities of the three algorithms that we achieved in this paper are 0(1) for RUS and DOSUS,and O(M2N) for SUS which are less than the other conventional user selection methods.
推荐文章
5G Massive MIMO天馈建设方案探讨
5G Massive MIMO
天馈方案
Massive MIMO小区基于负荷的传输模式自适应技术研究
传输模式
波束赋形
Massive MIMO
自适应
用户感知速率
Massive MIMO系统导频污染下的信道估计
大规模 MIMO
MMSE 导频污染
非理想CSI下MIMO MRC系统多用户分集性能分析
信道估计误差
共信道干扰
多输入-多输出
最大比合并
多用户分集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Capacity maximizing in massive MIMO with linear precoding for SSF and LSF channel with perfect CSI
来源期刊 数字通信与网络(英文版) 学科
关键词
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 92-99
页数 8页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (5)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
数字通信与网络(英文)
季刊
2352-8648
50-1212/TN
重庆市南岸区崇文路2号
eng
出版文献量(篇)
129
总下载数(次)
0
总被引数(次)
9
论文1v1指导