基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Purpose: The goal of this study is to explore whether deep learning based embed ded models can provide a better visualization solution for large citation networks. De sign/methodology/approach: Our team compared the visualization approach borrowed from the deep learning community with the well-known bibliometric network visualization for large scale data. 47,294 highly cited papers were visualized by using three network embedding models plus the t-SNE dimensionality reduction technique. Besides, three base maps were created with the same dataset for evaluation purposes. All base maps used the classic Open Ord method with different edge cutting strategies and parameters. Findings: The network embedded maps with t-SNE preserve a very similar global structure to the full edges classic force-directed map, while the maps vary in local structure. Among them, the Node2Vec model has the best overall visualization performance, the local structure has been significantly improved and the maps' layout has very high stability.Research limitations: The computational and time costs of training are very high for network em bedded models to obtain high dimensional latent vector. Only one dimensionality reduction technique was tested. Practical implications: This paper demonstrates that the network embedding models are able to accurately reconstruct the large bibliometric network in the vector space. In the future, apart from network visualization, many classical vector-based machine learning algorithms can be applied to network representations for solving bibliomet ric analysis tasks. Originality/value: This paper provides the first systematic comparison of classical science mapping visualization with network embedding based visualization on a large scale dataset. We showed deep learning based network embedding model with t-SNE can provide a richer,more stable science map. We also designed a practical evaluation method to investigate and compare maps.
推荐文章
用于网格计算的Overlay Network 设计算法的研究
网格架构
Overlay Network
拓扑结构
拉格朗日松驰
NETWORK6000系统在酸站车间的应用
集散控制
联锁控制
NETWORK6000
粘胶短纤
闪蒸
基于Overlay Network协同选播通信机制的研究
OverlayNetwork
协同选播机制
负载均衡
Petri网
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Using Network Embedding to Obtain a Richer and More Stable Network Layout for a Large Scale Bibliometric Network
来源期刊 数据与情报科学学报:英文版 学科 工学
关键词 SCIENTOMETRICS Visualization Essential science indicators Bibliometric networks Network embedding Science mapping
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 154-177
页数 24页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SCIENTOMETRICS
Visualization
Essential
science
indicators
Bibliometric
networks
Network
embedding
Science
mapping
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据与情报科学学报:英文版
季刊
2096-157X
10-1394/G2
北京市中关村北四环西路33号
82-563
出版文献量(篇)
445
总下载数(次)
1
总被引数(次)
0
论文1v1指导