基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种卷积神经网络(convolutional neural network,CNN)和长短时记忆(long short-term memory,LSTM)网络混合的心律失常自动检测算法,模型结构共由5层卷积层、5层池化层、1层LSTM层和1层全连接层组成.利用CNN能够自动提取特征和LSTM能够捕捉时间序列前后依赖关系的能力,将简单预处理后的心电信号数据直接输入到混合模型当中.整个模型将特征提取和分类器分类2个步骤结合,从而更加高效、准确地识别5种不同的心律失常疾病.在测试集上进行试验,准确率、敏感性和特异性分别为99.48%、99.47%和99.86%.试验结果表明,本研究提出的方法能够高效、准确地识别不同类型的心律失常疾病.
推荐文章
基于多流CNN-LSTM网络的群体情绪识别
群体情绪识别
卷积神经网络
长短期记忆网络
多流
基于添加Dropout层的CNN-LSTM网络短期负荷预测
Dropout技术
长短期记忆网络
卷积网络
负荷预测
基于级联分类器的心律失常检测
室性早搏
左束支传导阻滞
级联分类器
支持向量机
加权最小距离分类器
基于CNN-LSTM的QAR数据特征提取与预测
深度学习
融合卷积神经网络
长短时记忆网络
特征提取
时间序列预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CNN-LSTM混合模型的心律失常自动检测
来源期刊 山东大学学报(工学版) 学科
关键词 卷积神经网络 长短时记忆网络 自动检测 心电图 心律失常
年,卷(期) 2021,(3) 所属期刊栏目 机器学习与数据挖掘|Machine Learning & Data Mining
研究方向 页码范围 30-36,51
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.6040/j.issn.1672-3961.0.2020.445
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (2)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(8)
  • 参考文献(3)
  • 二级参考文献(5)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(7)
  • 参考文献(1)
  • 二级参考文献(6)
2019(6)
  • 参考文献(3)
  • 二级参考文献(3)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
长短时记忆网络
自动检测
心电图
心律失常
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
总被引数(次)
24236
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导