基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Electromyography (EMG) has already been broadly used in human-machine interaction (HMI) applications. Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgently need a solution. Recently, many EMG pattern recognition tasks have been addressed using deep learning methods. In this paper, we analyze recent papers and present a literature review describing the role that deep learning plays in EMG-based HMI. An overview of typical network structures and processing schemes will be provided. Recent progress in typical tasks such as movement classification, joint angle prediction, and force/torque estimation will be introduced. New issues, including multimodal sensing, inter-subject/inter-session, and robustness toward disturbances will be discussed. We attempt to provide a comprehensive analysis of current research by discussing the advantages, challenges, and opportunities brought by deep learning. We hope that deep learning can aid in eliminating factors that hinder the development of EMG-based HMI systems. Furthermore, possible future directions will be presented to pave the way for future research.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Discrimination geochemical interaction effects on mineralization at the polymetallic Glojeh deposit,
Backward Elimination
Quadratic polynomial model
Miniature-scale changes
Ordinal–disordinal interaction effect
Akima's polynomial contour map
Immobile element
An experimental study of interaction between pure water and alkaline feldspar at high temperatures a
Alkaline feldspar
Autoclave
High-temperature and high-pressure experiments
Diffusion in garnet: a review
High temperature and high pressure
Diffusion
Garnet
Point defects
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deep Learning for EMG-based Human-Machine Interaction: A Review
来源期刊 自动化学报(英文版) 学科
关键词
年,卷(期) 2021,(3) 所属期刊栏目 REVIEWS
研究方向 页码范围 512-533
页数 22页 分类号
字数 语种 英文
DOI 10.1109/JAS.2021.1003865
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (89)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1952(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(4)
  • 参考文献(4)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(4)
  • 参考文献(4)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(7)
  • 参考文献(7)
  • 二级参考文献(0)
2017(9)
  • 参考文献(9)
  • 二级参考文献(0)
2018(11)
  • 参考文献(11)
  • 二级参考文献(0)
2019(28)
  • 参考文献(28)
  • 二级参考文献(0)
2020(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报(英文版)
双月刊
2329-9266
10-1193/TP
大16开
北京市海淀区中关村东路95号
80-604
2014
eng
出版文献量(篇)
801
总下载数(次)
0
论文1v1指导