基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrim-ination.However,their performances are often associated with certain factors,such as experimental requirements and resulting mixed signals.The main purpose of this study is to achieve fast and accurate neutron-gamma discrimination without a priori information on the signal to be analyzed,as well as the experimental setup.Here,a novel method is proposed based on two concepts.The first method exploits the power of nonnegative tensor factorization(NTF)as a blind source separation method to extract the original components from the mixture signals recorded at the output of the stilbene scintillator detector.The second one is based on the principles of support vector machine(SVM)to identify and discriminate these components.In addition to these two main methods,we adopted the Mexican-hat function as a continuous wavelet transform to characterize the components extracted using the NTF model.The resulting scalograms are processed as colored images,which are segmented into two distinct classes using the Otsu thresholding method to extract the features of interest of the neutrons and gamma-ray components from the background noise.We subsequently used principal com-ponent analysis to select the most significant of these fea-tures wich are used in the training and testing datasets for SVM.Bias-variance analysis is used to optimize the SVM model by finding the optimal level of model complexity with the highest possible generalization performance.In this framework,the obtained results have verified a suit-able bias-variance trade-off value.We achieved an oper-ational SVM prediction model for neutron-gamma classification with a high true-positive rate.The accuracy and performance of the SVM based on the NTF was evaluated and validated by comparing it to the charge comparison method via figure of merit.The results indicate that the proposed approach has a superior discrimination quality(figure of merit of 2.20).
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Neutron-gamma discrimination method based on blind source separation and machine learning
来源期刊 核技术(英文版) 学科
关键词
年,卷(期) 2021,(2) 所属期刊栏目 NUCLEAR PHYSICS AND INTERDISCIPLINARY RESEARCH
研究方向 页码范围 70-80
页数 11页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1909(1)
  • 参考文献(1)
  • 二级参考文献(0)
1964(1)
  • 参考文献(1)
  • 二级参考文献(0)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
核技术(英文版)
月刊
1001-8042
31-1559/TL
16开
上海市800-204信箱 联合编辑部
4-647
1989
eng
出版文献量(篇)
2225
总下载数(次)
0
总被引数(次)
2765
论文1v1指导