基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采用传统的基于图像处理的检测方法对高速公路抛落物进行检测不仅耗时耗力,而且检测效果不理想,为解决该问题,提出一种基于Faster R-CNN的深度学习检测方法.在原始Faster R-CNN的基础上,采用残差网络Resnet101代替传统的VGG-16网络和ZFNet网络,作为图像特征提取网络;采用尺寸为4像素、8像素和16像素的锚框代替原始锚框,得到高速公路抛落物检测模型.采用自制的高速公路抛落物数据集对该检测方法的有效性进行验证,结果显示,采用该方法检测的平均准确率达到了91.75%,相比原始的Faster R-CNN算法和yolov3算法,分别提高了7.02%和11.13%.
推荐文章
基于Faster R-CNN的显著性目标检测方法
视觉显著性
目标检测
元胞自动机
超像素分割
基于Faster R-CNN的蓝莓冠层果实检测识别分析
蓝莓
冠层果实
FasterR-CNN
精准识别
产量预估
不同成熟度
一种改进的Faster R-CNN对小尺度车辆检测研究
FasterR-CNN
小尺度车辆检测
全卷积网络
区域建议网络
锚选择
平衡锚数量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Faster R-CNN的高速公路抛落物检测
来源期刊 上海船舶运输科学研究所学报 学科
关键词 抛落物检测 Faster R-CNN算法 残差网络Resnet101 yolov3算法
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 70-75
页数 6页 分类号 U412.366
字数 语种 中文
DOI 10.3969/j.issn.1674-5949.2021.01.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (2)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
抛落物检测
Faster R-CNN算法
残差网络Resnet101
yolov3算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海船舶运输科学研究所学报
季刊
1674-5949
31-2023/U
大16开
上海市浦东民生路600号
1978
chi
出版文献量(篇)
954
总下载数(次)
3
总被引数(次)
3849
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导