基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Al2O3/Al6Ti2O13 composite ceramics with low thermal expansion properties are promising for the rapid preparation of large-scale and complex components by directed energy deposition-laser based (DED-LB) technology. However, the wider application of DED-LB technology is limited due to the inadequate understanding of process conditions. The shaping quality, microstructure, and mechanical properties of Al2O3/Al6Ti2O13 (6 mol%TiO2) composite ceramics were systematically investigated as a function of energy input in an extensive process window. On this basis, the formation mechanism of solidification defects and the evolution process of microstructure were revealed, and the optimized process parameters were determined. Results show that high energy input improves the fluidity of the molten pool and promotes the uniform distribution and full growth of constituent phases, thus, facilitating the elimination of solidification defects, such as pores and strip gaps. In addition, the microstructure size is strongly dependent on the energy input, increasing when the energy input increases. Moreover, the morphology of theα-Al2O3 phase gradually transforms from cellular into cellular dendrite with increasing energy input due to changing solidification conditions. Under the comprehensive influence of solidification defects and microstructure size, the fracture toughness and flexural strength of Al2O3/Al6Ti2O13 composite ceramics present a parabolic law behavior as the energy input increases. Optimal shaping quality and excellent mechanical properties are achieved at an energy input range of 0.36?0.54 W?min2 g?1 mm?1. Within this process window, the average microhardness, fracture toughness, and flexural strength of Al2O3/Al6Ti2O13 composite ceramics are up to 1640 Hv, 3.87 MPa m1/2, and 227 MPa, respectively. This study provides practical guidance for determining the process parameters of DED-LB of melt growth Al2O3/Al6Ti2O13 composite ceramics.
推荐文章
Theoretical calculation of equilibrium Mg isotope fractionation between silicate melt and its vapor
Equilibrium Mg isotope fractionation
Force constant
Structural optimization
RPFR
德国版智能电网“E-Energy”
智能电网
E-Energy
能源互联网
分布式能源
Dated deposition couplets link catchment erosion flux with storm discharge on the Chinese Loess Plat
Landslide-dammed reservoir on the CLP
Deposition couplet
XRF core scanning
137Cs activity
Erosion flux
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Investigation of melt-growth alumina/aluminum titanate composite ceramics prepared by directed energy deposition
来源期刊 极端制造(英文) 学科
关键词
年,卷(期) 2021,(3) 所属期刊栏目 APPROACHES AND THEORIES OF PROCESSING
研究方向 页码范围 48-62
页数 15页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
极端制造(英文)
季刊
2631-8644
51-1794/TH
大16开
四川绵阳市绵山路64号
2019
chi
出版文献量(篇)
75
总下载数(次)
60
论文1v1指导