基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对朴素贝叶斯算法在处理不平衡数据时准确率不高的问题,提出类权重和属性值权重相结合的双重加权朴素贝叶斯算法.双重加权可降低算法的属性独立假设对分类结果的影响,提升少数类对分类过程的作用.乳腺癌患者复发率预测结果表明,双重加权朴素贝叶斯算法相对于传统的朴素贝叶斯算法、属性值加权的朴素贝叶斯、K最近邻分类算法、支持向量机分类算法、随机森林算法,准确率上分别从0.72,0.79,0.77,0.80,0.81提升至0.84,精确率和召回率均有不同程度的提升.
推荐文章
加权朴素贝叶斯算法在消防检测中的应用
消防检测
属性加权
朴素贝叶斯算法
信息增益
权重
一种新型加权朴素贝叶斯分类算法
数据挖掘
朴素贝叶斯
属性频率
基于改进特征加权的朴素贝叶斯分类算法
文本分类
朴素贝叶斯
JS散度
词频
文本频率
类别频率
新型加权粗糙朴素贝叶斯算法及其应用研究
加权朴素贝叶斯
决策表
属性约简
对数条件似然估计
垃圾邮件过滤
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 双重加权朴素贝叶斯算法预测乳腺癌复发率
来源期刊 牡丹江师范学院学报(自然科学版) 学科
关键词 算法改进 数据不平衡 双重加权 乳腺癌复发
年,卷(期) 2021,(2) 所属期刊栏目 数学与大数据研究
研究方向 页码范围 11-15
页数 5页 分类号 O171
字数 语种 中文
DOI 10.3969/j.issn.1003-6180.2021.02.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (31)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
算法改进
数据不平衡
双重加权
乳腺癌复发
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
牡丹江师范学院学报(自然科学版)
季刊
1003-6180
23-1289/N
16开
黑龙江省牡丹江市文化街191号
1975
chi
出版文献量(篇)
2986
总下载数(次)
9
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导