基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有癫痫发作预测方法存在精度较低、错误报警率较高、癫痫患者睡眠脑电特异性、致痫灶位置和类型不同导致脑电信号存在差异的问题.文中提出基于深度神经网络的个性化睡眠癫痫发作预测方法,帮助医生和患者采取及时有效的治疗措施,降低患者患并发症和猝死的概率.对原始脑电信号滤波和分段以去除噪声,保证短时间内触发警报,利用离散小波变换分解信号并提取统计特征表征脑电信号时频特征.再应用双向长短期记忆网络挖掘最具鉴别能力的特征并结合留一法分类,经过决策过程优化得到预测结果.在不同频带限制条件下的实验表明,与睡眠癫痫相关的δ频带信号是影响发作预测性能的重要因素.相比现有睡眠癫痫预测方法,文中方法性能较优.
推荐文章
基于NWP和深度学习神经网络短期风功率预测
风功率预测
深度学习神经网络
数值天气预报
建立转换模型
概率密度
案例分析
基于深度卷积神经网络的交通流量预测数学模型设计
交通流量预测
智能交通
数学模型
深度神经网络
预测精度
仿真实验
基于LSTM模型的单导联脑电癫痫发作预测
癫痫发作预测
单导联
小波能量
长短时程记忆网络
基于跨层全连接神经网络的癫痫发作期识别
聚类划分互信息
脑电
癫痫
同步
模式分类
跨层全连接神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度神经网络的个性化睡眠癫痫发作预测
来源期刊 模式识别与人工智能 学科
关键词 癫痫发作预测 睡眠脑电(EEG) 深度神经网络 个性化
年,卷(期) 2021,(4) 所属期刊栏目 “智能医疗及医学图像处理”专辑|Intelligent Medical Treatment and Medical Image Processing
研究方向 页码范围 333-342
页数 10页 分类号 R318
字数 语种 中文
DOI 10.16451/j.cnki.issn1003-6059.202104005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (153)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(2)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(7)
  • 参考文献(7)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
癫痫发作预测
睡眠脑电(EEG)
深度神经网络
个性化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导