基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人机对话中的情感识别对提升人机交互效率具有重要意义.当前,人机对话系统中的情感识别主要由特征提取和回归两步完成.但是,通常这两个步骤是相互独立的,目标并不一致,难以判断提取的特征是否为合适的情感特征.再者,在特征融合方面,传统方法仅将不同模态特征简单拼接,忽略了不同模态对分类结果影响的大小.针对以上问题,本文提出了一种端到端的对话情感识别模型E2E-CER,该模型将情感识别过程整合在一个统一的系统中.此外,还引入了基于注意力机制的多模态融合方法,提高了对上下文语境的学习能力,改善了动态特征融合效果.最后基于公共数据集IEMOCAP进行情了感分类识别实验,实验结果显示,同对话情感识别基线相比,所提模型表现明显高于平均水平,表明其在情感识别上的有效性.
推荐文章
基于WAP的一种新的端到端安全模型
无线应用协议
门限方案
联合密钥共享
双加密
一种改进的端到端混合QoS模型
Qos
Intserv/RSVP
Diffserv
MPLS
服务类型
一种基于支持向量回归的互联网端到端延迟预测算法
互联网
端到端延迟
支持向量回归
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 E2E-CER:一种基于端到端的对话情感识别分类模型
来源期刊 小型微型计算机系统 学科
关键词 端到端 多模态融合 情感识别 记忆网络 注意力机制
年,卷(期) 2021,(2) 所属期刊栏目 人工智能与算法研究|Artificial Intelligence and Algorithm Research
研究方向 页码范围 235-240
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.02.003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (14)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(10)
  • 参考文献(0)
  • 二级参考文献(10)
2018(6)
  • 参考文献(2)
  • 二级参考文献(4)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
端到端
多模态融合
情感识别
记忆网络
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导