基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于人们对事物认知的局限性和信息的不确定性,在对决策问题进行聚类分析时,传统的模糊聚类不能有效解决实际场景中的决策问题,因此有学者提出了有关犹豫模糊集的聚类算法.现有的层次犹豫模糊K均值聚类算法没有利用数据集本身的信息来确定距离函数的权值,且簇中心的计算复杂度和空间复杂度都是指数级的,不适用于大数据环境.针对上述问题,文中提出了一种基于密度峰值思想的加权犹豫模糊聚类算法(WHFDP),首先给出了犹豫模糊元素集的补齐方法,并结合变异系数理论给出了新的距离函数权重计算公式,然后利用密度峰值选取簇中心,不仅降低了簇中心计算的复杂度,而且提高了对不同规模以及任意形状数据集的适应性,算法的时间复杂度和空间复杂度也降为多项式级,最后采用典型数据集进行仿真实验,证明了所提算法的有效性.
推荐文章
基于加权K近邻的改进密度峰值聚类算法
数据挖掘
加权K近邻
密度峰值
聚类
基于密度峰值优化的谱聚类算法
谱聚类
密度峰值
密度聚类
自适应
Nystr(o)m抽样
基于改进果蝇优化的密度峰值聚类算法
密度峰值聚类
截断距离
果蝇优化算法
Tent混沌
柯西变异
收敛性
基于非参数核密度估计的密度峰值聚类算法
聚类
密度峰值
非参数核密度估计
截断距离
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密度峰值的加权犹豫模糊聚类算法
来源期刊 计算机科学 学科 工学
关键词 数据挖掘 聚类算法 犹豫模糊集 密度峰值 变异系数
年,卷(期) 2021,(1) 所属期刊栏目 数据库&大数据&数据科学
研究方向 页码范围 145-151
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.11896/jsjkx.200400043
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (131)
参考文献  (23)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(4)
  • 参考文献(2)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(5)
  • 参考文献(2)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(7)
  • 参考文献(4)
  • 二级参考文献(3)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据挖掘
聚类算法
犹豫模糊集
密度峰值
变异系数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
总被引数(次)
150664
论文1v1指导