We study the relations between two groups related to cluster automorphism groups which are defined by Assem,Schiffler and Shamchenko.We establish the relation-ships among (strict) direct cluster automorphism groups and those groups consisting of periodicities of labeled seeds and exchange matrices,respectively,in the language of short exact sequences.As an application,we characterize automorphism-finite cluster algebras in the cases of bipartite seeds or finite mutation type.Finally,we study the relation between the group Aut(A) for a cluster algebra A and the group AutMn(S) for a mutation group Mn and a labeled mutation class S,and we give a negative answer via counter-examples to King and Pressland's problem.