基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Configuration tuning is essential to optimize the performance of systems (e.g., databases, key-value stores). High performance usually indicates high throughput and low latency. At present, most of the tuning tasks of systems are performed artificially (e.g., by database administrators), but it is hard for them to achieve high performance through tuning in various types of systems and in various environments. In recent years, there have been some studies on tuning traditional database systems, but all these methods have some limitations. In this article, we put forward a tuning system based on attention-based deep reinforcement learning named WATuning, which can adapt to the changes of workload characteristics and optimize the system performance efficiently and effectively. Firstly, we design the core algorithm named ATT-Tune for WATuning to achieve the tuning task of systems. The algorithm uses workload characteristics to generate a weight matrix and acts on the internal metrics of systems, and then ATT-Tune uses the internal metrics with weight values assigned to select the appropriate configuration. Secondly, WATuning can generate multiple instance models according to the change of the workload so that it can complete targeted recommendation services for different types of workloads. Finally, WATuning can also dynamically fine-tune itself according to the constantly changing workload in practical applications so that it can better fit to the actual environment to make recommendations. The experimental results show that the throughput and the latency of WATuning are improved by 52.6% and decreased by 31%, respectively, compared with the throughput and the latency of CDBTune which is an existing optimal tuning method.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
倒立摆的Reinforcement Learning模糊自适应控制
单级倒立摆
Reinforcement Learning
模糊自适应控制
基于Attention-based C-GRU神经网络的文本分类
文本分类
深度学习
Attention机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 WATuning: A Workload-Aware Tuning System with Attention-Based Deep Reinforcement Learning
来源期刊 计算机科学技术学报(英文版) 学科
关键词
年,卷(期) 2021,(4) 所属期刊栏目 Special Section on AI4DB and DB4AI
研究方向 页码范围 741-761
页数 21页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (24)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学技术学报(英文版)
双月刊
1000-9000
11-2296/TP
16开
北京中关村科学院南路6号 《计算机科学技术学报(英)》编辑部
1986
eng
出版文献量(篇)
2207
总下载数(次)
1
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导