钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
科教文艺期刊
\
大学学报期刊
\
中北大学学报(自然科学版)期刊
\
不平衡数据下基于CNN的网络入侵检测
不平衡数据下基于CNN的网络入侵检测
作者:
冯英引
师智斌
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
网络入侵检测
类别不平衡
卷积神经网络
UNSW-NB15数据集
原始流量
摘要:
深度学习的自学习能力可以实现入侵检测系统的不断更新及扩展,增强入侵检测系统的防范能力,但目前大部分基于深度学习的网络入侵检测研究都未考虑到数据集类别不平衡问题.针对此问题,提出了一种类别重组技术结合Focal Loss损失函数的处理方法,用于原始网络入侵流量分类.该方法把原始流量生成灰度图输入卷积神经网络CNN进行特征提取学习,类别重组技术保证了训练集中攻击类别间的相对均衡,而Focal Loss损失函数通过影响类别权重提高了 CNN模型对复杂样本的关注.在三个CNN模型上进行了实验,macro-f1分别提高了 9.41%,1.65%和4.39%,结果表明该方法能够有效处理网络入侵检测中的类别不平衡问题,且明显提高了少数类样本的识别精度.
暂无资源
收藏
引用
分享
推荐文章
不平衡入侵检测数据的代价敏感分类策略
不平衡数据
数据预处理
代价敏感
入侵检测
入侵检测不平衡样本子群发现数据简化策略
子群发现
不平衡数据集
数据简化
实例选择
特征选择
基于样本投影分布的平衡不平衡数据集分类
平衡不平衡数据集
样本投影分布
支持向量机
支持向量数据描述
不平衡数据集的分类方法研究
机器学习
不平衡数据
数据分类
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
不平衡数据下基于CNN的网络入侵检测
来源期刊
中北大学学报(自然科学版)
学科
关键词
网络入侵检测
类别不平衡
卷积神经网络
UNSW-NB15数据集
原始流量
年,卷(期)
2021,(4)
所属期刊栏目
自动化与计算机
研究方向
页码范围
318-324
页数
7页
分类号
TP393.08|TP18
字数
语种
中文
DOI
10.3969/j.issn.1673-3193.2021.04.005
五维指标
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(58)
共引文献
(19)
参考文献
(10)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1994(2)
参考文献(0)
二级参考文献(2)
1997(1)
参考文献(0)
二级参考文献(1)
1998(2)
参考文献(0)
二级参考文献(2)
2001(2)
参考文献(0)
二级参考文献(2)
2002(2)
参考文献(0)
二级参考文献(2)
2003(3)
参考文献(0)
二级参考文献(3)
2004(2)
参考文献(0)
二级参考文献(2)
2006(2)
参考文献(0)
二级参考文献(2)
2007(1)
参考文献(0)
二级参考文献(1)
2008(1)
参考文献(0)
二级参考文献(1)
2010(1)
参考文献(0)
二级参考文献(1)
2011(2)
参考文献(0)
二级参考文献(2)
2012(1)
参考文献(0)
二级参考文献(1)
2013(3)
参考文献(0)
二级参考文献(3)
2014(2)
参考文献(0)
二级参考文献(2)
2015(5)
参考文献(0)
二级参考文献(5)
2016(6)
参考文献(1)
二级参考文献(5)
2017(9)
参考文献(1)
二级参考文献(8)
2018(14)
参考文献(2)
二级参考文献(12)
2019(4)
参考文献(3)
二级参考文献(1)
2020(3)
参考文献(3)
二级参考文献(0)
2021(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
网络入侵检测
类别不平衡
卷积神经网络
UNSW-NB15数据集
原始流量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中北大学学报(自然科学版)
主办单位:
中北大学
出版周期:
双月刊
ISSN:
1673-3193
CN:
14-1332/TH
开本:
大16开
出版地:
太原13号信箱
邮发代号:
创刊时间:
1979
语种:
chi
出版文献量(篇)
2903
总下载数(次)
7
总被引数(次)
15437
期刊文献
相关文献
1.
不平衡入侵检测数据的代价敏感分类策略
2.
入侵检测不平衡样本子群发现数据简化策略
3.
基于样本投影分布的平衡不平衡数据集分类
4.
不平衡数据集的分类方法研究
5.
不平衡数据分类的研究现状
6.
不平衡数据的集成分类算法综述
7.
基于MTS-AdaBoost的不平衡数据分类研究
8.
汽车制动鼓不平衡量的检测
9.
不平衡受荷下基坑开挖静力计算
10.
基于支持向量机的不平衡数据分类算法的研究
11.
基于不平衡数据集的客户流失预测研究
12.
面向不平衡数据分类的KFDA-Boosting算法
13.
基于AdaBoost的类不平衡学习算法
14.
基于证据理论的不平衡数据半监督分类方法
15.
论新清单规范下的不平衡报价
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
中学生教育
体育
图书情报档案
大学学报
少儿教育
教育
文化
文学
新闻出版
科研管理
艺术
语言文字
中北大学学报(自然科学版)2022
中北大学学报(自然科学版)2021
中北大学学报(自然科学版)2020
中北大学学报(自然科学版)2019
中北大学学报(自然科学版)2018
中北大学学报(自然科学版)2017
中北大学学报(自然科学版)2016
中北大学学报(自然科学版)2015
中北大学学报(自然科学版)2014
中北大学学报(自然科学版)2013
中北大学学报(自然科学版)2012
中北大学学报(自然科学版)2011
中北大学学报(自然科学版)2010
中北大学学报(自然科学版)2009
中北大学学报(自然科学版)2008
中北大学学报(自然科学版)2007
中北大学学报(自然科学版)2006
中北大学学报(自然科学版)2005
中北大学学报(自然科学版)2004
中北大学学报(自然科学版)2003
中北大学学报(自然科学版)2002
中北大学学报(自然科学版)2001
中北大学学报(自然科学版)2000
中北大学学报(自然科学版)1999
中北大学学报(自然科学版)2021年第4期
中北大学学报(自然科学版)2021年第3期
中北大学学报(自然科学版)2021年第2期
中北大学学报(自然科学版)2021年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号