基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度学习的自学习能力可以实现入侵检测系统的不断更新及扩展,增强入侵检测系统的防范能力,但目前大部分基于深度学习的网络入侵检测研究都未考虑到数据集类别不平衡问题.针对此问题,提出了一种类别重组技术结合Focal Loss损失函数的处理方法,用于原始网络入侵流量分类.该方法把原始流量生成灰度图输入卷积神经网络CNN进行特征提取学习,类别重组技术保证了训练集中攻击类别间的相对均衡,而Focal Loss损失函数通过影响类别权重提高了 CNN模型对复杂样本的关注.在三个CNN模型上进行了实验,macro-f1分别提高了 9.41%,1.65%和4.39%,结果表明该方法能够有效处理网络入侵检测中的类别不平衡问题,且明显提高了少数类样本的识别精度.
推荐文章
不平衡入侵检测数据的代价敏感分类策略
不平衡数据
数据预处理
代价敏感
入侵检测
入侵检测不平衡样本子群发现数据简化策略
子群发现
不平衡数据集
数据简化
实例选择
特征选择
基于样本投影分布的平衡不平衡数据集分类
平衡不平衡数据集
样本投影分布
支持向量机
支持向量数据描述
不平衡数据集的分类方法研究
机器学习
不平衡数据
数据分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 不平衡数据下基于CNN的网络入侵检测
来源期刊 中北大学学报(自然科学版) 学科
关键词 网络入侵检测 类别不平衡 卷积神经网络 UNSW-NB15数据集 原始流量
年,卷(期) 2021,(4) 所属期刊栏目 自动化与计算机
研究方向 页码范围 318-324
页数 7页 分类号 TP393.08|TP18
字数 语种 中文
DOI 10.3969/j.issn.1673-3193.2021.04.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (19)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(9)
  • 参考文献(1)
  • 二级参考文献(8)
2018(14)
  • 参考文献(2)
  • 二级参考文献(12)
2019(4)
  • 参考文献(3)
  • 二级参考文献(1)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络入侵检测
类别不平衡
卷积神经网络
UNSW-NB15数据集
原始流量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中北大学学报(自然科学版)
双月刊
1673-3193
14-1332/TH
大16开
太原13号信箱
1979
chi
出版文献量(篇)
2903
总下载数(次)
7
总被引数(次)
15437
论文1v1指导