基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 细粒度图像分类是计算机视觉领域具有挑战性的课题,目的是将一个大的类别分为更详细的子类别,在工业和学术方面都有着十分广泛的研究需求.为了改善细粒度图像分类过程中不相关背景干扰和类别差异特征难以提取的问题,提出了一种将目标检测方法YOLOv3(you only look once)和双线性融合网络相结合的细粒度分类优化算法,以此提高细粒度图像分类的性能.方法 利用重新训练过的目标检测算法YOLOv3粗略确定目标在图像中的位置;使用背景抑制方法消除目标以外的信息干扰;利用融合不同通道、不同层级卷积层特征的方法对经典的细粒度分类算法双线性卷积神经网络(bilinear convolutional neural network,B-CNN)进行改进,优化分类性能,通过融合双线性网络中不同卷积层的特征向量,得到更加丰富的互补信息,从而提高细粒度分类精度.结果 实验结果表明,在CUB-200-2011(Caltech-UCSD Birds-200-2011)、Cars196和Aircrafts100数据集中,本文算法的分类准确率分别为86.3%、92.8%和89.0%,比经典的B-CNN细粒度分类算法分别提高了2.2%、1.5%和4.9%,验证了本文算法的有效性.同时,与已有细粒度图像分类算法相比也表现出一定的优势.结论 改进算法使用YOLOv3有效滤除了大量无关背景,通过特征融合方法来改进双线性卷积神经分类网络,丰富特征信息,使分类的结果更加精准.
推荐文章
基于静态行为特征的细粒度Android恶意软件分类
Android
静态特征
细粒度恶意分类
基于核化双线性卷积网络的细粒度图像分类
核化双线性聚合
双线性卷积网络
端到端学习
细粒度图像分类
细粒度网络流量分类架构及其优化
细粒度网络流量
指纹自动生成
位分割状态机
启发式算法
字符串匹配
融合FV-SIFT特征和深度卷积特征的车辆图像细粒度分类
图像细粒度分类
SIFT算法
FisherVector算法
卷积神经网络
SVM分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 YOLOv3和双线性特征融合的细粒度图像分类
来源期刊 中国图象图形学报 学科
关键词 细粒度图像分类 目标检测 背景抑制 特征融合 双线性卷积神经网络(B-CNN)
年,卷(期) 2021,(4) 所属期刊栏目 图像分析和识别|Image Analysis and Recognition
研究方向 页码范围 847-856
页数 10页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (63)
共引文献  (191)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(6)
  • 参考文献(1)
  • 二级参考文献(5)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
细粒度图像分类
目标检测
背景抑制
特征融合
双线性卷积神经网络(B-CNN)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导