Recently,exploring appropriate anode materials for current commercial lithium-ion batteries (LIBs) with suitable operating potential and long cycle life has attracted extensive attention.Herein,a novel anode of Bi nanoparticles fully encapsulated in carbon nanosphere framework with uniform yolk-shell nanostructure was prepared via a facile hydrothermal method.Due to the special structure design,this anode of yolk-shell Bi@C can effectively moderate the volume exchange,avoid the aggregation of active Bi nanoparticle and provide superior kinetic during discharge/charge process.Cycling in the voltage of 0.01-2.0 V,yolk-shell Bi@C anode exhibits outstanding Li+ storage performance (a reversible capacity over 200 mAh g-1 after 400 cycles at 1.25 A g-1) and excellent rate capability (a capacity of 404,347,304,275,240,199 and 163 mAh g-1 at 0.05,0.1,0.25,0.5,1.0,1.8 and 3.2 A g-1,respectively).This work indicates that rational design of nanostructured anode materials is highly applicable for the next-generation LIBs.