基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
事件抽取是信息抽取的主要任务之一,而触发词抽取是事件抽取的重要子任务.事件要素与事件触发词之间存在关联信息,现有的事件触发词抽取方法主要关注事件触发词本身,没有充分的利用事件要素信息.因此,提出一种事件要素注意力与编码层融合的事件触发词抽取模型,能够有效地利用事件要素信息,提高触发词抽取性能.通过事件要素与事件触发词之间的相关性来显示利用事件要素信息,同时利用编码层的多头自注意力机制间接学习事件要素与事件触发词之间的依赖关系,并将两个方法得到的输出向量进行处理,作为特征送入到编码层中进行训练.此外,通过词特征模型获取语义信息.该方法在ACE2005英文语料上对事件触发词抽取的F值达到71.95%.
推荐文章
基于动态掩蔽注意力机制的事件抽取
事件抽取
注意力机制
多事件抽取
动态掩蔽注意力
融合注意力机制的人机交互信息 半监督敏感数据抽取算法
注意力机制
人机交互
半监督
敏感数据抽取
BiLSTM模型
CRF模型
融合句法依存树注意力的关系抽取研究
关系抽取
句法依存
注意力
融合
基于依存句法分析与分类器融合的触发词抽取方法
事件抽取
触发词
依存句法分析
触发词-实体描述对
支持向量机
分类器融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 事件要素注意力与编码层融合的触发词抽取研究
来源期刊 小型微型计算机系统 学科
关键词 事件触发词抽取 事件要素注意力 编码层 词特征
年,卷(期) 2021,(4) 所属期刊栏目 人工智能与算法研究|Artificial Intelligence and Algorithms Research
研究方向 页码范围 673-677
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.04.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (17)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
事件触发词抽取
事件要素注意力
编码层
词特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导