基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统基于知识库及规则库的零件可制造性分析方法柔性差,以及现有基于深度学习的可制造性分析方法无法给出零件具体不可制造原因的现状,提出一种基于深度学习的零件可制造性分析方法.首先,通过数字化建模技术构建大量带有具体可制造性类别标签的三维CAD模型,并进行点云提取,从而构建深度学习所需数据集;然后,基于PointNet网络结构搭建面向孔特征可制造性分析的深度学习网络,并完成网络的调参及训练;之后通过与基于体素表示的三维卷积神经网络(3D-CNN)及已有方法进行对比,说明所搭建的点云深度学习网络具有更好的鲁棒性和较低的算法时间复杂度:最后通过一个实例零件对网络的实际性能进行检验,对孔特征进行可制造性分析,识别出不可制造的孔特征,并说明其原因.实验结果表明,该方法能够在保证较高识别准确率同时得出特征不可制造的具体原因,具有更大的使用价值.
推荐文章
并行工程下基于特征的零件可制造性及其评价方法研究
并行工程
特征技术
零件可制造性
评价方法
基于深度学习的滴灌带滴孔质量检测方法研究
滴灌带
滴孔检测
深度学习
卷积神经网络
YOLO
基于历史和制造约束的可制造性分析系统实现
可制造性分析系统
设计历史
制造约束
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
高光谱遥感图像分类
堆叠稀疏自动编码器
深度学习
特征表示
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的孔特征可制造性分析方法
来源期刊 图学学报 学科
关键词 可制造性分析 数字化建模 深度学习 孔特征 点云网络
年,卷(期) 2021,(1) 所属期刊栏目 数字化设计与制造|Digital Design and Manufacture
研究方向 页码范围 117-123
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.11996/JG.j.2095-302X.2021010117
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (21)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
可制造性分析
数字化建模
深度学习
孔特征
点云网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
图学学报
双月刊
2095-302X
10-1034/T
16开
北京海淀学院路37号中国图学学会学报编辑部
1980
chi
出版文献量(篇)
3336
总下载数(次)
7
论文1v1指导