基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, we develop a novel global-attention-based neural network (GANN) for vision language intelligence, specifically, image captioning (language description of a given image). As many previous works, the encoder-decoder framework is adopted in our proposed model, in which the encoder is responsible for encoding the region proposal features and extracting global caption feature based on a specially designed module of predicting the caption objects, and the decoder generates captions by taking the obtained global caption feature along with the encoded visual features as inputs for each attention head of the decoder layer. The global caption feature is introduced for the purpose of exploring the latent contributions of region proposals for image captioning, and further helping the decoder better focus on the most relevant proposals so as to extract more accurate visual feature in each time step of caption generation. Our GANN is implemented by incorporating the global caption feature into the attention weight calculation phase in the word predication process in each head of the decoder layer. In our experiments, we qualitatively analyzed the proposed model, and quantitatively evaluated several state-of-the-art schemes with GANN on the MS-COCO dataset. Experimental results demonstrate the effectiveness of the proposed global attention mechanism for image captioning.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Concentration-discharge patterns of weathering products from global rivers
Concentration-discharge
Rivers
Silicate weathering
Solutes
Global Mapper系统在海洋调查中的应用
Global Mapper
海洋调查
地形
信息
基于Vision的果蝇复眼病变图像的处理
果蝇
机器视觉
Vision 8.5
图像处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Global-Attention-Based Neural Networks for Vision Language Intelligence
来源期刊 自动化学报(英文版) 学科
关键词
年,卷(期) 2021,(7) 所属期刊栏目 SPECIAL ISSUE ON COGNITIVE COMPUTING FOR COLLABORATIVE ROBOTICS
研究方向 页码范围 1243-1252
页数 10页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报(英文版)
双月刊
2329-9266
10-1193/TP
大16开
北京市海淀区中关村东路95号
80-604
2014
eng
出版文献量(篇)
801
总下载数(次)
0
总被引数(次)
1766
论文1v1指导