基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
计算机视觉的裂纹自动识别算法在飞机结构疲劳试验中具有较好的工程应用前景,但由于飞机结构构型多样及疲劳试验环境复杂,传统方法的裂纹识别准确率难以满足要求.针对此问题,设计了一种基于关键结构定位的检测策略,并以目标分割算法掩码-区域卷积神经网络(Mask-region convolutional neural network,简称Mask-RCNN)为基础对模型架构和非极大值抑制模块进行了适应性改进,提出了一种裂纹自动识别方法.该方法具有主动避开干扰因素、对图片质量要求较低的特点,同时利用Mask-RCNN将像素信息引入参数优化的特性,具备更高的识别准确率.在元件疲劳试验中,该方法对铆钉、裂纹的识别准确率分别为100%和87.5%,相较于现有方法优势显著.
推荐文章
一种低成本微型飞行器姿态角自动检测方法
地平线
微型飞行器
姿态校正
低成本
基于Faster rcnn的棉麻纱混纺比自动检测
Faster rcnn
目标检测
棉纤维
麻纤维
混纺比
图像
模型
基于Mask RCNN的绝缘子自爆缺陷检测
绝缘子
深度学习
Mask RCNN
自爆缺陷
微机自动检测系统体系结构研究
微机自动检测
自动检测
检测技术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进Mask-RCNN的飞行器结构裂纹自动检测方法
来源期刊 振动、测试与诊断 学科
关键词 机器视觉 裂纹 深度学习 目标分割算法掩码-区域卷积神经网络
年,卷(期) 2021,(3) 所属期刊栏目 论文
研究方向 页码范围 487-494
页数 8页 分类号 TH878
字数 语种 中文
DOI 10.16450/j.cnki.issn.1004-6801.2021.03.010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (17)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器视觉
裂纹
深度学习
目标分割算法掩码-区域卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
振动、测试与诊断
双月刊
1004-6801
32-1361/V
南京市御道街29号
chi
出版文献量(篇)
2937
总下载数(次)
3
论文1v1指导