New-generation synchrotron light sources are being designed and operated worldwide to provide brighter radiation by reducing the beam emittance to X-ray diffraction limits.Intra-beam scattering(IBS)and Tou-schek scattering in such facilities are significant and require attention because of their ultra-low emittance.Therefore,cure strategies need to be carefully studied to obtain high-quality photon beams.For the Shanghai Synchrotron Radiation Facility Upgrade(SSRF-U),a candidate lattice of the storage ring,reaching the soft X-ray diffraction limit,was designed and presented for the first time in this study.The emittance growth and beam lifetime in the SSRF-U storage ring were studied using particle simulations for a series of different machine configurations.The gains with RF frequencies of 100 MHz and 500 MHz were compared.Along with a better filling pattern,a more suitable RF frequency was adopted in the SSRF-U.The variations in the equilibrium beam emittance with beam coupling and bunch-lengthening were identified using simulations.Optimal beam coupling and required bunch-lengthening for the SSRF-U storage ring were thus determined.The fitness of the beam energy in the SSRF-U was subsequently assessed using the obtained parameters.Additionally,the Touschek scattering and beam lifetime were calculated,and an acceptable total beam lifetime was obtained.