基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Classification models for multivariate time series have drawn the interest of many researchers to the field with the objective of developing accurate and efficient models. However, limited research has been conducted on generating adversarial samples for multivariate time series classification models. Adversarial samples could become a security concern in systems with complex sets of sensors. This study proposes extending the existing gradient adversarial transformation network (GATN) in combination with adversarial autoencoders to attack multivariate time series classification models. The proposed model attacks classification models by utilizing a distilled model to imitate the output of the multivariate time series classification model. In addition, the adversarial generator function is replaced with a variational autoencoder to enhance the adversarial samples. The developed methodology is tested on two multivariate time series classification models: 1-nearest neighbor dynamic time warping (1-NN DTW) and a fully convolutional network (FCN). This study utilizes 30 multivariate time series benchmarks provided by the University of East Anglia (UEA) and University of California Riverside (UCR). The use of adversarial autoencoders shows an increase in the fraction of successful adversaries generated on multivariate time series. To the best of our knowledge, this is the first study to explore adversarial attacks on multivariate time series. Additionally, we recommend future research utilizing the generated latent space from the variational autoencoders.
推荐文章
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
The use of hydrogeochemical analyses and multivariate statistics for the characterization of thermal
Hydrogeochemistry
Thermal waters
Multivariate statistical analysis
Silica geothermometers
Mixing models
Cold groundwaters
Determination of Hf-Sr-Nd isotopic ratios by MC-ICP-MS using rapid acid digestion after flux-free fu
Certified reference material
Flux-free fusion
Hf-Sr-Nd isotopic ratio
Procedural blank
Rapid acid digestion
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Generating Adversarial Samples on Multivariate Time Series using Variational Autoencoders
来源期刊 自动化学报(英文版) 学科
关键词
年,卷(期) 2021,(9) 所属期刊栏目 PAPERS
研究方向 页码范围 1523-1538
页数 16页 分类号
字数 语种 英文
DOI 10.1109/JAS.2021.1004108
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (94)
共引文献  (9)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1908(1)
  • 参考文献(0)
  • 二级参考文献(1)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1937(2)
  • 参考文献(0)
  • 二级参考文献(2)
1940(1)
  • 参考文献(0)
  • 二级参考文献(1)
1945(2)
  • 参考文献(0)
  • 二级参考文献(2)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(12)
  • 参考文献(1)
  • 二级参考文献(11)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(13)
  • 参考文献(4)
  • 二级参考文献(9)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(12)
  • 参考文献(9)
  • 二级参考文献(3)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报(英文版)
双月刊
2329-9266
10-1193/TP
大16开
北京市海淀区中关村东路95号
80-604
2014
eng
出版文献量(篇)
801
总下载数(次)
0
总被引数(次)
1766
论文1v1指导