基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对图像识别领域中的黑盒对抗攻击问题,基于强化学习中DDQN框架和Dueling网络结构提出一种黑盒对抗攻击算法.智能体通过模仿人类调整图像的方式生成对抗样本,与受攻击模型交互获得误分类结果,计算干净样本和对抗样本的结构相似性后获得奖励.攻击过程中仅获得了受攻击模型的标签输出信息.实验结果显示,攻击在CIFAR10和CIFAR100数据集上训练的4个深度神经网络模型的成功率均超过90%,生成的对抗样本质量与白盒攻击算法FGSM相近且成功率更有优势.
推荐文章
基于深度强化学习的图像修复算法设计
图像修复
机器学习
深度强化学习
大数据
自相似
关联性
基于深度强化学习的服务功能链映射算法
网络功能虚拟化
服务功能链
深度强化学习
网络时延
网络运维开销
基于策略记忆的深度强化学习序列推荐算法研究
推荐系统
强化学习
策略网络
注意力机制
基于个性的群体强化学习算法
个性
Agent
群体强化学习
RoboCup
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度强化学习的黑盒对抗攻击算法
来源期刊 计算机与现代化 学科
关键词 对抗样本 黑盒攻击 深度学习 强化学习
年,卷(期) 2021,(4) 所属期刊栏目 信息安全|INFORMATION SECURITY
研究方向 页码范围 117-121
页数 5页 分类号 TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1006-2475.2021.04.020
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
对抗样本
黑盒攻击
深度学习
强化学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导