基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对象级情感分类旨在判断句子中特定对象的情感极性类别.在现有基于卷积神经网络的研究中,常在模型的池化层采用最大池化操作提取文本特征作为句子表示,该操作未考虑由对象所划分的上下文,因此无法得到更细粒度的对象上下文特征.针对该问题,该文提出一种融合多特征的分段卷积神经网络(multi-feature piecewise convolution neural network,MP-CNN)模型,根据对象将句子划分为两个部分作为上下文,并在池化层采用分段最大池化操作提取上下文特征.此外,该模型还将有助于情感分类的多个辅助特征融入其中,如词的相对位置、词性以及词在情感词典中的情感得分,并通过卷积操作计算词的注意力得分,有效判断对象的情感极性类别.最后在SemEval 2014数据集和Twitter数据集的实验中,取得了较基于传统机器学习、基于循环神经网络以及基于单一最大池化的卷积神经网络分类模型更好的分类效果.
推荐文章
多尺度卷积循环神经网络的情感分类技术
文本情感分类
卷积神经网络
循环神经网络
长短时记忆
多尺度
基于卷积神经网络与多特征融合的Twitter情感分类方法
文本分类
情感分析
卷积神经网络
词向量
特征融合
基于多特征和深度神经网络的维吾尔文情感分类
情感分类
双向长短记忆网络
卷积神经网络
注意力机制
维吾尔语
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合多特征的分段卷积神经网络对象级情感分类方法
来源期刊 中文信息学报 学科
关键词 多特征 分段 卷积神经网络 对象级情感分类
年,卷(期) 2021,(2) 所属期刊栏目 情感分析与社会计算|Sentiment Analysis and Social Computing
研究方向 页码范围 116-124,132
页数 10页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1003-0077.2021.02.012
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (95)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(9)
  • 参考文献(1)
  • 二级参考文献(8)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多特征
分段
卷积神经网络
对象级情感分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导