原文服务方: 计算机测量与控制       
摘要:
针对国防军工、电子信息等领域对多批次、小批量钣金零件快速、智能制造的需求,提出了一种基于卷积神经网络的少样本钣金件表面缺陷分类识别方法;首先基于卷积神经网络的网络架构,搭建出了经典的分类模型,并在实验中进行了参数修改,以达到实际生产中的表面缺陷检测要求;其次利用缺陷分割提取的方法获得卷积网络训练模型的样本集,并进行数据增强;实验结果表明,该模型的准确度可达97.02%;最后利用窗口滑移检测方法使待检测零件与模型进行对比,实现了对缺陷的分类和缺陷位置的标记;经实验验证,该方法的准确性和实时性均可满足实际工业生产要求.
推荐文章
基于卷积神经网络的管道表面缺陷识别研究
缺陷识别
管道表面缺陷
机器视觉
卷积神经网络
缺陷分类
GoogleNet构造优化
基于卷积神经网络的未知协议识别方法
深度学习
机器学习
卷积神经网络
未知协议识别
基于卷积神经网络的ECG信号识别方法
ECG信号识别
短时傅里叶变换
卷积神经网络
支持向量机
基于卷积神经网络的交通声音事件识别方法
Gammatone滤波器
卷积神经网络
音频事件识别
公路交通环境
声音数字信号
子带滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的钣金件表面缺陷分类识别方法
来源期刊 计算机测量与控制 学科
关键词 卷积神经网络 缺陷检测 缺陷分割提取 窗口滑移检测
年,卷(期) 2020,(6) 所属期刊栏目 设计与应用
研究方向 页码范围 187-190,196
页数 5页 分类号 TP3
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2020.06.038
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 殷国富 四川大学机械工程学院 617 5927 35.0 50.0
2 王玲 四川大学机械工程学院 111 310 10.0 12.0
3 尹湘云 四川大学机械工程学院 10 45 3.0 6.0
4 谢政峰 四川大学机械工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (147)
共引文献  (493)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(2)
  • 参考文献(0)
  • 二级参考文献(2)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(7)
  • 参考文献(0)
  • 二级参考文献(7)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(12)
  • 参考文献(0)
  • 二级参考文献(12)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(18)
  • 参考文献(1)
  • 二级参考文献(17)
2016(19)
  • 参考文献(1)
  • 二级参考文献(18)
2017(15)
  • 参考文献(2)
  • 二级参考文献(13)
2018(9)
  • 参考文献(2)
  • 二级参考文献(7)
2019(10)
  • 参考文献(4)
  • 二级参考文献(6)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
缺陷检测
缺陷分割提取
窗口滑移检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导