基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有主流文本蕴含模型大多采用循环神经网络编码,并采用各种注意力推理机制或辅以手工提取的特征来提升蕴含关系识别准确率,由于复杂的网络结构和RNNs网络串行机制导致这些模型训练和推理速度较慢.本文提出轻量级文本蕴含模型,采用自注意力编码器编码文本向量,点积注意力交互两段文本,再采用卷积神经网络对交互特征推理,整个结构可根据不同数据的推理难度叠加不同模块数量.在多个文本蕴含数据集实验表明,本文模型在保持较高识别准确率情况下仅用一个块参数仅为665 K,模型推理速度相比其他主流文本蕴含模型至少提升一倍.
推荐文章
一种轻量级智能药盒
轻量级
智能药盒
ESP32
物联网
自动化
嵌入式
一种轻量级自适应入侵检测系统
IDS
数据挖掘
ChiSquare
神经网络
一种轻量级Web通信加密方案
Web加密
密钥交换
隐私保护
会话密钥协商
一种轻量级的Web服务QoS预测机制
Web服务
服务质量预测
服务器端
卡尔曼滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种轻量级文本蕴含模型
来源期刊 四川大学学报(自然科学版) 学科
关键词 注意力机制 卷积神经网络 轻量级 文本蕴含
年,卷(期) 2021,(5) 所属期刊栏目 计算机科学|Computer Science
研究方向 页码范围 31-38
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.19907/j.0490-6756.2021.052001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (4)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
注意力机制
卷积神经网络
轻量级
文本蕴含
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
双月刊
0490-6756
51-1595/N
大16开
成都市九眼桥望江路29号
62-127
1955
chi
出版文献量(篇)
5772
总下载数(次)
10
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导