基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Many applications requiring both spectral and spatial information at high resolution benefit from spectral imaging. Although different technical methods have been developed and commercially available, computational spectral cameras represent a compact, lightweight, and inexpensive solution. However, the tradeoff between spatial and spectral resolutions, dominated by the limited data volume and environmental noise, limits the potential of these cameras. In this study, we developed a deeply learned broadband encoding stochastic hyperspectral camera. In particular, using advanced artificial intelligence in filter design and spectrum reconstruction, we achieved 7000–11,000 times faster signal processing and~10 times improvement regarding noise tolerance. These improvements enabled us to precisely and dynamically reconstruct the spectra of the entire field of view, previously unreachable with compact computational spectral cameras.
推荐文章
苹果NBS-encoding基因对斑点落叶病菌侵染的表达响应
苹果斑点落叶病
NBS-encoding基因
表达模式
选择压力
共表达网络
Detection of foreign materials on surface of ginned cotton by hyper-spectral imaging
hyper-spectral imaging
ginned cotton
foreign materials
detection
Ultrafast Internal Conversion Dynamics of 2-Chloropyridine by Femtosecond Time-Resolved Photoelectron Imaging
Photoelectronimaging
Ultrafastprocess
Internalconversion
2-Chloropyridine
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deeply learned broadband encoding stochastic hyperspectral imaging
来源期刊 光:科学与应用(英文版) 学科
关键词
年,卷(期) 2021,(6) 所属期刊栏目 Letters
研究方向 页码范围 969-975
页数 7页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
光:科学与应用(英文版)
双月刊
2095-5545
22-1404/O4
吉林省长春市东南湖大路3888号
eng
出版文献量(篇)
762
总下载数(次)
0
总被引数(次)
112
论文1v1指导