基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,图神经网络(Graph Neural Networks,GNNs)在网络表示学习领域中发挥着越来越重要的作用.然而,大多数现有的GNNs在每一层中只考虑节点的直接相连的(1阶)邻居,忽略了高阶邻域信息.在节点表示学习过程中引入高阶拓扑知识是一个关键问题.本文中,我们提出了多邻域注意力图卷积网络(Multi-neighboring Attention Graph Convolutional Networks,MAGCN).首先基于注意力机制使用多个邻域掩码从节点的不同阶邻居中学习多个节点表示,然后使用动态路由算法自适应地确定这些表示对最终节点表示的贡献,以聚合成最终的节点表示.在Cora、Citeseer和Pubmed 3个引文网络数据集上的节点分类实验表明,MAGCN比目前较先进的网络表示学习模型有更高的分类准确率.
推荐文章
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
基于表情符注意力机制的微博情感分析模型
表情符
微博
情感分析
注意力机制
基于多尺度融合注意力机制的人脸表情识别研究
计算机视觉
深度学习
人脸表情识别
特征提取
多尺度特征融合
注意力机制
一种基于自注意力机制的组推荐方法
群组推荐
自注意力机制
协同过滤
深度学习
融合策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于注意力机制融合多阶邻域信息的网络表示学习模型
来源期刊 小型微型计算机系统 学科
关键词 网络表示学习 注意力机制 图卷积 节点分类
年,卷(期) 2021,(4) 所属期刊栏目 图形与图像技术|Graphics and Image Technology
研究方向 页码范围 761-765
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.04.015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (2)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络表示学习
注意力机制
图卷积
节点分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导