基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在方面级情感分类中,常用的方法是用卷积神经网络或循环神经网络提取特征,利用注意力权重获取序列中不同词汇的重要程度.但此类方法未能很好地利用文本的句法信息,导致模型不能准确地在评价词与方面词之间建立联系.该文提出一种图卷积神经记忆网络模型(MemGCN)来解决此依赖问题.首先通过记忆网络存储文本表示与辅助信息,然后利用基于依存句法树的图卷积神经网络获取文本的句法信息.最后,使用注意力机制融合句法信息与其他辅助信息.在SemEval 2014任务和Twitter数据集上的实验结果表明,MemGCN显著提升了模型性能.
推荐文章
基于空间注意力与图卷积的多标签图像分类算法
图卷积网络
多标签图像分类
空间注意力
特征融合
多尺度卷积循环神经网络的情感分类技术
文本情感分类
卷积神经网络
循环神经网络
长短时记忆
多尺度
基于深度记忆网络的特定目标情感分类
特定目标情感分类
深度记忆网络
情感极性
目标敏感
对抗长短时记忆网络的跨语言 文本情感分类方法
文本情感
跨语言
对抗
长短时记忆网络
共享特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图卷积记忆网络的方面级情感分类
来源期刊 中文信息学报 学科
关键词 句法信息 图卷积网络 注意力机制 辅助信息
年,卷(期) 2021,(8) 所属期刊栏目 情感分析与社会计算|Sentiment Analysis and Social Computing
研究方向 页码范围 98-106
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1003-0077.2021.08.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (55)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
句法信息
图卷积网络
注意力机制
辅助信息
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
论文1v1指导