原文服务方: 华侨大学学报(自然科学版)       
摘要:
针对文本情感分类任务中,有情感标注的语料在不同语言中的不均衡问题,结合深度学习和迁移学习,提出一种基于对抗长短时记忆网络(ALSTM)的跨语言文本情感分类方法.设置双语各自独立的特征提取网络和共享特征提取网络,把获取到的特征拼接输入到分类器进行分类.在共享特征提取网络中,设置语言分类器,运用对抗思想优化模型,通过投票法决定文本最终的情感极性.实验表明:该方法可以取得跨语言文本情感分类任务更高的准确度.
推荐文章
基于双向长短时记忆单元和卷积神经网络的多语种文本分类方法
多语种文本分类
长短时记忆单元
卷积神经网络
基于深度双向长短时记忆网络的文本情感分类
情感分类
词嵌入
长短时记忆网络
循环神经网络
长短时记忆网络的自由体操视频自动描述方法
长短时记忆网络
注意力机制
自由体操
自动描述
基于长短时记忆网络的仿真系统数据故障诊断方法
故障诊断
长短时网络
神经网络
数据分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 对抗长短时记忆网络的跨语言 文本情感分类方法
来源期刊 华侨大学学报(自然科学版) 学科
关键词 文本情感 跨语言 对抗 长短时记忆网络 共享特征
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 251-256
页数 6页 分类号 TP183|TP391.1
字数 语种 中文
DOI 10.11830/ISSN.1000-5013.201804046
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈锻生 华侨大学计算机科学与技术学院 75 955 16.0 28.0
2 张洪博 华侨大学计算机科学与技术学院 7 30 2.0 5.0
3 党莉 华侨大学计算机科学与技术学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (2)
同被引文献  (2)
二级引证文献  (0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本情感
跨语言
对抗
长短时记忆网络
共享特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华侨大学学报(自然科学版)
双月刊
1000-5013
35-1079/N
大16开
1980-01-01
chi
出版文献量(篇)
2681
总下载数(次)
0
总被引数(次)
14643
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导