原文服务方: 高压电器       
摘要:
针对真空接触器的渐发性故障识别准确率不高的现状,提出了一种基于随机森林与长短时记忆神经网络的故障诊断方法。文中分析了某型号12 kV真空接触器在机械保持工作情况下合闸线圈电流信号的故障特征,构建了两层诊断模型,在初步诊断中利用随机森林分类器,识别特征明显的突发性故障,利用长短记忆神经网络模型发掘数据时序特征的特点,识别渐发性故障,在最终诊断中利用证据融合将两者结果融合。文中提出的故障诊断模型有效解决了传统故障诊断方法对渐发性故障识别困难的不足,实验表明,该方法对渐发性故障识别准确率达到了91.1%以上,整体故障识别的准确率达到93.3%以上,该方法具有一定的应用价值。
推荐文章
基于长短时记忆网络的仿真系统数据故障诊断方法
故障诊断
长短时网络
神经网络
数据分析
基于长短时记忆神经网络的风电机组滚动轴承故障诊断方法
风电机组
滚动轴承
故障诊断
回归神经网络
长短时记忆神经网络
小波包变换
基于长短时记忆神经网络的水库洪水预报
洪水预报
长短时记忆神经网络
预见期
训练速度
白盆珠水库
基于长短时记忆神经网络的带钢酸洗浓度预测
浓度预测
带钢酸洗
深度学习
长短期记忆
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于随机森林与长短时记忆神经网络的真空接触器故障诊断方法研究
来源期刊 高压电器 学科
关键词 真空接触器 电流曲线 随机森林 长短时记忆神经网络 证据融合 故障诊断
年,卷(期) 2022,(5) 所属期刊栏目 研究与分析
研究方向 页码范围 103-111
页数 8页 分类号
字数 语种 中文
DOI 10.13296/j.1001⁃1609.hva.2022.05.014
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
真空接触器
电流曲线
随机森林
长短时记忆神经网络
证据融合
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高压电器
月刊
1001-1609
61-1127/TM
大16开
西安市西二环北段18号
1958-01-01
汉语
出版文献量(篇)
635
总下载数(次)
0
总被引数(次)
0
论文1v1指导