作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于线性模型的矩阵分解推荐算法对信息的特征提取单一,当用户和物品含有大量隐含信息时,无法满足用户需求的个性化推荐.针对此问题,提出一种评分和社会标签融合的卷积神经网络推荐算法,该算法能够根据上下文信息,利用非线性模型提取隐含高阶信息,处理复杂且稀疏的数据.首先,设计由两路由多层感知器和卷积神经网络组成的深层网络结构,分别实现利用社会标签信息和用户评分信息建模用户兴趣和项目信息的潜在特征向量;然后,构建对多层神经网络学习后的结果进行融合的输出层,得出预测结果;最后,运用真实数据集进行实验验证.结果表明,该算法与当前主流的推荐模型相比,能更好地利用社会标签信息进行精准推荐.
推荐文章
融合社会标签与信任关系的社会网络推荐方法
社会网络
推荐
信任度
矩阵分解
标签
融合空洞卷积神经网络的语义SLAM研究
语义SLAM
空洞卷积神经网络
语义标签
动态点剔除
地图构建
结果分析
改进卷积神经网络在分类与推荐中的实例应用
服装分类与推荐
卷积神经网络
图片增广
感知哈希算法
基于卷积神经网络多层特征融合的目标跟踪
目标跟踪
特征融合
特征表达
目标定位
卷积神经网络
回归模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合评分和社会标签的卷积神经网络推荐模型研究
来源期刊 软件工程 学科
关键词 评分 社会标签 卷积神经网络 推荐模型
年,卷(期) 2021,(9) 所属期刊栏目 方法与技术|Method & Technology
研究方向 页码范围 28-31,27
页数 5页 分类号 TP391.3
字数 语种 中文
DOI 10.19644/j.cnki.issn2096-1472.2021.09.007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (108)
共引文献  (11)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(15)
  • 参考文献(0)
  • 二级参考文献(15)
2017(19)
  • 参考文献(1)
  • 二级参考文献(18)
2018(16)
  • 参考文献(2)
  • 二级参考文献(14)
2019(12)
  • 参考文献(4)
  • 二级参考文献(8)
2020(7)
  • 参考文献(7)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
评分
社会标签
卷积神经网络
推荐模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件工程
月刊
2096-1472
21-1603/TP
大16开
辽宁省沈阳市浑南新区新秀街2号
8-198
1985
chi
出版文献量(篇)
5636
总下载数(次)
15
总被引数(次)
7315
论文1v1指导