作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对相控阵雷达识别的问题,提出一种基于粒子群优化极限学习机(PSO-KELM)的识别方法.在核函数极限学习机(kernel extreme learning machine,KELM)的基础上,引入粒子群优化算法(particle swarm optimization,PSO),求得核函数参数最优解,提高相控阵雷达识别准确率.通过构建雷达数据库,使用粒子群优化极限学习机的方法对不同噪声情况下的雷达数据进行识别,并与核函数极限学习机、核函数支持向量机(kernel support vector machine,KSVM)和半监督式迁移学习(semi-supervised and transfer learning,SSTL)的方法进行对比.仿真结果表明:在不同雷达种类和不同噪声情况下,该方法识别准确率均高于其他方法.
推荐文章
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
改进粒子群优化的极限学习机软测量建模方法
软测量建模
极限学习机
粒子群优化算法
自适应权重
基于结合混沌纵横交叉的粒子群算法优化极限学习机的短期负荷预测
极限学习机
混沌纵横交叉
粒子群算法
预测精度
短期负荷预测
粒子群算法优化极限学习机的旋风分离器压降建模
极限学习机
粒子群优化算法
旋风分离器
建模
压降
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化极限学习机的雷达识别方法
来源期刊 兵工自动化 学科
关键词 相控阵雷达 辐射源识别 粒子群优化 核函数 极限学习机(extreme learning machine,ELM)
年,卷(期) 2021,(9) 所属期刊栏目 武器装备智能化|Armament Intellectualization
研究方向 页码范围 1-5,10
页数 6页 分类号 TN95
字数 语种 中文
DOI 10.7690/bgzdh.2021.09.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (122)
共引文献  (73)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(10)
  • 参考文献(1)
  • 二级参考文献(9)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(16)
  • 参考文献(0)
  • 二级参考文献(16)
2013(13)
  • 参考文献(0)
  • 二级参考文献(13)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(6)
  • 参考文献(4)
  • 二级参考文献(2)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(7)
  • 参考文献(2)
  • 二级参考文献(5)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
相控阵雷达
辐射源识别
粒子群优化
核函数
极限学习机(extreme learning machine,ELM)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
兵工自动化
月刊
1006-1576
51-1419/TP
大16开
四川省绵阳市207信箱
1982
chi
出版文献量(篇)
6566
总下载数(次)
20
总被引数(次)
28636
论文1v1指导