原文服务方: 西安工程大学学报       
摘要:
为了提高乳房形态识别精度,采用密度峰值快速聚类(clustering by fast search and find of density peaks,CFSFDP)算法对西部地区108位青年女性的乳房形态特征数据进行聚类分析,再运用极限学习机(extreme learning machine,ELM)算法识别乳房形态,并对比分析了在3种激活函数下,ELM乳房形态识别模型隐含层神经元个数与准确率的关系。结果表明:ELM算法对乳房形态识别准确率较高且用时较短,平均时长为1.28 s。当模型激活函数选择sin且隐含层神经元个数为25时,模型识别乳房形态准确率较好,平均为98.3%。ELM乳房形态识别研究在一定程度上改善了消费者乳房与文胸号型之间的配伍性,为人体形态识别模型参数的选择提供了依据。
推荐文章
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
基于关节信息和极限学习机的人体动作识别
人体动作识别
极限学习机
协方差
方向位移直方图
小波核极限学习机分类器
极限学习机
核学习机
小波分析
小波核函数
分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于极限学习机的乳房形态识别
来源期刊 西安工程大学学报 学科
关键词 乳房形态 乳房识别 极限学习机 文胸 密度峰值快速聚类算法
年,卷(期) 2022,(1) 所属期刊栏目 纺织科学
研究方向 页码范围 17-24
页数 7页 分类号 TS941.17
字数 语种 中文
DOI 10.13338/ji.ssn.1674-649x.2022.01.003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
乳房形态
乳房识别
极限学习机
文胸
密度峰值快速聚类算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安工程大学学报
双月刊
1674-649X
61-1471/N
大16开
1986-01-01
chi
出版文献量(篇)
3377
总下载数(次)
0
论文1v1指导