基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对PU(Positive and Unlabeled)文本分类问题,提出了一种基于图卷积网络的PU文本分类算法(GCN-PU),基本思想是给未标注样本加以不同的损失权重.将未标注样本全部视为负类样本,用以训练基于卷积神经网络的文本分类器;取卷积神经网络的倒数第二层的向量为文本的特征向量,以及对应的类别概率,作为图卷积网络的输入;利用图卷积网络得出的类别概率计算每个未标注样本的损失权重,重新训练文本分类器.不断重复上述三个步骤,直到算法参数稳定.在公开数据集20newsgroup上的实验结果表明,GCN-PU算法优于现有的方法,尤其在正类样本较少的情况下.
推荐文章
基于SVM主动学习技术的 PU 文本分类
支持向量机
主动学习
PU
文本分类
Rocchio
基于事件卷积特征的新闻文本分类
文本分类
事件
卷积神经网络
自然语言处理
卷积神经网络CNN算法在文本分类上的应用研究
数据挖掘
机器学习
卷积神经网络
文本分类
基于词义消歧的卷积神经网络文本分类模型
文本分类
卷积神经网络
长短时记忆网络
特征提取
自然语言处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 GCN-PU:基于图卷积网络的PU文本分类算法
来源期刊 计算机工程与应用 学科
关键词 卷积神经网络 图卷积网络 损失权重 PU文本分类
年,卷(期) 2021,(11) 所属期刊栏目 模式识别与人工智能|Pattern Recognition and Artificial Intelligence
研究方向 页码范围 162-167
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2003-0195
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
图卷积网络
损失权重
PU文本分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导