A phase-field model coupling with elastoplastic deformation and creep damage has been built to study the microstructural evolution and deformation behavior for Ni-Al single crystal alloy during the whole creep processing.The relevant experiments were conducted to verify the model validity.The simulation results show that under the tensile creep at 1223 K/100 MPa,cubic γ'phases coarsen along the direction parallel to the axis of tensile stress during the first two creep stages;and spindle-shaped and wavy γ'phases are formed during tertiary creep,similar to the experimental results.The evolution mechanism ofγ'phases is analyzed from the perspective of changes of stress and strain fields.The "island-like" γ phase is observed and its formation mechanism is discussed.With the increase of creep stress,the directional coarsening of γ'phase is accelerated,the steady-state creep rate is increased and the creep life is decreased.The comparison between simulated and experimental creep curves shows that this phase-field model can effectively simulate the performance changes during the first two creep stages and predict the influence of creep stresses on creep properties.Our work provides a potential approach to synchronously simulate the creep microstructure and property of superalloys strengthened by γ'precipitates.