基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目标检测是计算机视觉领域三大任务之一,同时也是计算机视觉领域内一个最基本和具有挑战性的热点课题,近一年来基于Transformer的目标检测算法研究引发热潮.简述Transformer框架在目标检测领域的研究状况,介绍了其基本原理、常用数据集和常用评价方法,并用多种公共数据集对不同算法进行对比以分析其优缺点,在综述研究基础上,结合行业应用对基于Transformer的目标检测进行总结与展望.
推荐文章
基于Transformer的端到端路面裂缝检测方法
路面裂缝检测
多尺度特征融合
Pre-LN Transformer网络
联合回归损失
端到端
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
期刊_基于深度学习的目标检测技术的研究综述
计算机视觉
深度学习 目标检测
基于Swin Transformer的YOLOv5安全帽佩戴检测方法
安全帽佩戴检测
YOLOv5
Swin Transformer
Ghost
新型跨尺度特征融合
K-means++
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Transformer目标检测研究综述
来源期刊 现代信息科技 学科
关键词 目标检测 Transformer 计算机视觉 深度学习
年,卷(期) 2021,(7) 所属期刊栏目 信息技术|Information Technology
研究方向 页码范围 14-17
页数 4页 分类号 TP391
字数 语种 中文
DOI 10.19850/j.cnki.2096-4706.2021.07.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
Transformer
计算机视觉
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代信息科技
半月刊
2096-4706
44-1736/TN
16开
广东省广州市白云区机场路1718号8A09
46-250
2017
chi
出版文献量(篇)
4784
总下载数(次)
45
总被引数(次)
3182
论文1v1指导