基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高软件开发的质量和效率,代码自动生成是当前的研究热点,代码自动生成的性能是其中的重要问题.现有代码自动生成的性能分析方法较简单,难以评估代码自动生成过程中程序员与代码自动生成工具各自的特征.本文综合考虑了代码自动生成过程中程序员与代码自动生成工具的作用,提出了一种基于半监督学习的代码自动生成性能评估方法,通过抽取程序员行为与代码自动生成工具行为的重要特征,划分代码自动生成的性能类别,建立了基于深度神经网络的代码自动生成过程性能评估模型,并计算程序员行为特征与代码自动生成工具行为特征对性能的影响程度.实验结果表明,该方法可以有效分析程序员行为与代码自动生成工具行为对代码自动生成过程性能的影响.
推荐文章
基于半监督学习的一种图像检索方法
基于内容的图像检索
半监督学习
图像特征
相关度
查准率—查全率曲线
一种基于半监督学习的应用层流量分类方法
流量分类
半监督学习
特征选择
一种基于受限约束范围标签传播的半监督学习算法
概率转移矩阵
受限约束范围
标签传播
半监督学习算法
基于半监督学习的应用流分类方法
流量分类
半监督学习
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种半监督学习的代码自动生成性能评估方法
来源期刊 小型微型计算机系统 学科
关键词 代码自动生成 性能评估 半监督学习 性能类别 程序员 代码自动生成工具
年,卷(期) 2021,(3) 所属期刊栏目 计算机软件与数据库研究|Computer Software and Database Research
研究方向 页码范围 647-654
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.03.034
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (1)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1932(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(3)
  • 参考文献(0)
  • 二级参考文献(3)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
代码自动生成
性能评估
半监督学习
性能类别
程序员
代码自动生成工具
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导